Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__len(X)) → ACTIVATE(X)
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__len(X)) → LEN(activate(X))
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__from(X)) → FROM(activate(X))
ADD(s(X), Y) → S(n__add(activate(X), Y))
ADD(s(X), Y) → ACTIVATE(X)
LEN(cons(X, Z)) → S(n__len(activate(Z)))
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__len(X)) → ACTIVATE(X)
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__len(X)) → LEN(activate(X))
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__from(X)) → FROM(activate(X))
ADD(s(X), Y) → S(n__add(activate(X), Y))
ADD(s(X), Y) → ACTIVATE(X)
LEN(cons(X, Z)) → S(n__len(activate(Z)))
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__len(X)) → ACTIVATE(X)
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__len(X)) → LEN(activate(X))
ADD(s(X), Y) → ACTIVATE(X)
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__len(X)) → ACTIVATE(X)
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__len(X)) → LEN(activate(X))
ADD(s(X), Y) → ACTIVATE(X)
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))
Used ordering: Polynomial interpretation [25,35]:

POL(from(x1)) = 11/4 + (4)x_1   
POL(n__len(x1)) = 3/4 + (3/2)x_1   
POL(fst(x1, x2)) = (3/2)x_1 + (3/2)x_2   
POL(activate(x1)) = x_1   
POL(n__s(x1)) = (3/4)x_1   
POL(0) = 5/2   
POL(len(x1)) = 3/4 + (3/2)x_1   
POL(add(x1, x2)) = 1/4 + (2)x_1 + x_2   
POL(cons(x1, x2)) = 1/4 + x_1 + (3/4)x_2   
POL(FST(x1, x2)) = 15/4 + (3/2)x_1 + (3/2)x_2   
POL(n__add(x1, x2)) = 1/4 + (2)x_1 + x_2   
POL(LEN(x1)) = 4 + (3/2)x_1   
POL(n__fst(x1, x2)) = (3/2)x_1 + (3/2)x_2   
POL(n__from(x1)) = 11/4 + (4)x_1   
POL(s(x1)) = (3/4)x_1   
POL(ADD(x1, x2)) = 4 + (2)x_1   
POL(ACTIVATE(x1)) = 15/4 + x_1   
POL(nil) = 5/4   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented:

activate(n__len(X)) → len(activate(X))
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
fst(0, Z) → nil
add(0, X) → X
from(X) → cons(X, n__from(n__s(X)))
len(nil) → 0
add(s(X), Y) → s(n__add(activate(X), Y))
fst(X1, X2) → n__fst(X1, X2)
len(cons(X, Z)) → s(n__len(activate(Z)))
s(X) → n__s(X)
from(X) → n__from(X)
len(X) → n__len(X)
add(X1, X2) → n__add(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(n__fst(x1, x2)) = 1/4 + (5/2)x_1 + (5/2)x_2   
POL(ACTIVATE(x1)) = (2)x_1   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
QDP
                      ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.